An Advanced LMI-Based-LQR Design for Load Frequency Control of an Autonomous Hybrid Generation System
نویسندگان
چکیده
This paper proposes a load frequency control scheme for an autonomous hybrid generation system consisting of wind turbine generator (WTG), diesel engine generator (DEG), fuel cell (FC), aquaelectrolyzer (AE) and battery energy storage system (BESS). In wind power generation systems, operating conditions are changing continually due to wind speed and load changes, having an effect on system frequency. Therefore, a robust controller is required for load frequency control. The control scheme is based on Linear Matrix Inequality (LMI)-Linear Quadratic Regulator (LQR). The control optimization problem is obtained in terms of a system of LMI constraints and matrix equations that are simultaneously solved. The proposed load frequency control scheme with the advanced LMI-based-LQR (ALQR) design is applied for the autonomous hybrid generation system. The effectiveness and robustness of the proposed controller is demonstrated for different load and wind power perturbations. The results suggest superior performance of the proposed ALQR controller against an optimal output state feedback controller. The integrated control could be realized though the web by applying Internet of Things technologies within the future smart grid.
منابع مشابه
BIC based on Modified Droop Control of Hybrid AC/DC Microgrid with PV/Wind/ESS under Variable Generation and Load Conditions
The idea of a microgrid is created by utilizing more diverse ac or dc distributed generation (DG) sources along with an energy storage system (ESS) and loads. The most efficient and reliable selection of ac and dc microgrids is a hybrid ac/dc microgrid. The hybrid microgrid largely overcomes the shortcomings of standalone ac or dc microgrids. A bidirectional interlinking converter (BIC) is util...
متن کاملA New Algorithm for Load Flow Analysis in Autonomous Networks
In this paper, a novel algorithm for the load flow analysis problem in an islanded microgrid is proposed. The problem is modeled without any slack bus by considering the steady state frequency as one of the load flow variables. To model different control modes of DGs, such as droop, PV and PQ, in an islanded microgrid, a new formula for load flow equations is proposed. A hybrid optimization alg...
متن کاملEffect of Distributed Energy Resources in Energy Hubs on Load and Loss Factors of Energy Distribution Networks
In this paper, an attempt has been made to introduce a new control strategy including Plug-in Hybrid Electric Vehicle (PHEV) and Diesel engine generator to control the voltage and frequency of autonomous microgrids. The proposed control strategy has multiple advantages over the recent control methods in microgrids. The proposed method applies the primary and secondary frequency control strategy...
متن کاملDesign of Fuzzy Logic Based PI Controller for DFIG-based Wind Farm Aimed at Automatic Generation Control in an Interconnected Two Area Power System
This paper addresses the design procedure of a fuzzy logic-based adaptive approach for DFIGs to enhance automatic generation control (AGC) capabilities and provide better dynamic responses in multi-area power systems. In doing so, a proportional-integral (PI) controller is employed in DFIG structure to control the governor speed of wind turbine. At the first stage, the adjustable parameters of ...
متن کاملA Distributed Control Architecture for Autonomous Operation of a Hybrid AC/DC Microgrid System
Hybrid AC/DC microgrids facilitate the procedure of DC power connection into the conventional AC power system by developing the distributed generations (DGs) technologies. The conversion processes between AC and DC electrical powers are more convenient by hybrid systems. In this paper, an energy management system (EMS) for a hybrid microgrid network is proposed due to the optimal utilization of...
متن کامل